DS05-20845-2E

FLASH MEMORY

CMOS

$8 \mathrm{M}(1 \mathrm{M} \times 8 / 512 \mathrm{~K} \times 16)$ BIT

MBM29LV800TA-90-12/MBM29LV800BA-90/-12

■ FEATURES

- Single 3.0 V read, program, and erase

Minimizes system level power requirements

- Compatible with JEDEC-standard commands

Uses same software commands as E²PROMs

- Compatible with JEDEC-standard world-wide pinouts

48-pin TSOP(I) (Package suffix: PFTN - Normal Bend Type, PFTR - Reversed Bend Type)
44-pin SOP (Package suffix: PF)
48-ball FBGA (Package suffix: PBT)

- Minimum 100,000 program/erase cycles
- High performance

90 ns maximum access time

- Sector erase architecture

One 8 K word, two 4 K words, one 16 K word, and fifteen 32 K words sectors in word mode
One 16 K byte, two 8 K bytes, one 32 K byte, and fifteen 64 K bytes sectors in byte mode
Any combination of sectors can be concurrently erased. Also supports full chip erase

- Boot Code Sector Architecture

T = Top sector
B = Bottom sector

- Embedded Erase ${ }^{\text {TM }}$ Algorithms

Automatically pre-programs and erases the chip or any sector

- Embedded Program ${ }^{\text {TM }}$ Algorithms

Automatically writes and verifies data at specified address

- Data Polling and Toggle Bit feature for detection of program or erase cycle completion
- Ready/Busy output (RY/BY)

Hardware method for detection of program or erase cycle completion

- Automatic sleep mode

When addresses remain stable, automatically switch themselves to low power mode

- Low Vcc write inhibit $\leq 2.5 \mathrm{~V}$
- Erase Suspend/Resume

Suspends the erase operation to allow a read in another sector within the same device
(Continued)
(Continued)

- Sector protection

Hardware method disables any combination of sectors from program or erase operations

- Sector Protection set function by Extended sector Protect command
- Temporary sector unprotection

Temporary sector unprotection via the RESET pin

PACKAGE

(FPT-48P-M19)

48-pin Plastic TSOP (I)

(FPT-48P-M20)

44-pin Plastic SOP
Marking Side

(FPT-44P-M16)

48-pin Plastic FBGA

(BGA-48P-M02)

GENERAL DESCRIPTION

The MBM29LV800TA/BA are a 8M-bit, 3.0 V-only Flash memory organized as 1 M bytes of 8 bits each or 512 K words of 16 bits each. The MBM29LV800TA/BA are offered in a 48-pin TSOP(I), 44-pin SOP, and 48-ball FBGA packages. These devices are designed to be programmed in-system with the standard system 3.0 V Vcc supply. 12.0 V VPp and 5.0 V Vcc are not required for write or erase operations. The devices can also be reprogrammed in standard EPROM programmers.

The standard MBM29LV800TA/BA offer access times 90 ns and 120 ns , allowing operation of high-speed microprocessors without wait states. To eliminate bus contention the devices have separate chip enable (CE), write enable (WE), and output enable (OE) controls.

The MBM29LV800TA/BA are pin and command set compatible with JEDEC standard E ${ }^{2}$ PROMs. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine which controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the devices is similar to reading from 5.0 V and 12.0 V Flash or EPROM devices.

The MBM29LV800TA/BA are programmed by executing the program command sequence. This will invoke the Embedded Program Algorithm which is an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. Typically, each sector can be programmed and verified in about 0.5 seconds. Erase is accomplished by executing the erase command sequence. This will invoke the Embedded Erase Algorithm which is an internal algorithm that automatically preprograms the array if it is not already programmed before executing the erase operation. During erase, the devices automatically time the erase pulse widths and verify proper cell margin.

A sector is typically erased and verified in 1.0 second. (If already completely preprogrammed.)
The devices also feature a sector erase architecture. The sector mode allows each sector to be erased and reprogrammed without affecting other sectors. The MBM29LV800TA/BA are erased when shipped from the factory.

The devices feature single 3.0 V power supply operation for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations. A low Vcc detector automatically inhibits write operations on the loss of power. The end of program or erase is detected by Data Polling of DQ7, by the Toggle Bit feature on DQ6, or the RY/BY output pin. Once the end of a program or erase cycle has been completed, the devices internally reset to the read mode.

Fujitsu's Flash technology combines years of EPROM and E2PROM experience to produce the highest levels of quality, reliability, and cost effectiveness. The MBM29LV800TA/BA memories electrically erase the entire chip or all bits within a sector simultaneously via Fowler-Nordhiem tunneling. The bytes/words are programmed one byte/word at a time using the EPROM programming mechanism of hot electron injection.

FLEXIBLE SECTOR-ERASE ARCHITECTURE

- One 16 K byte, two 8 K bytes, one 32 K byte, and fifteen 64 K bytes
- Individual-sector, multiple-sector, or bulk-erase capability
- Individual or multiple-sector protection is user definable.
$(\times 8) \quad(\times 16)$

16 K byte
8 K byte

8 K byte
32 K byte

F7FFFH 7BFFFH EFFFFH 77FFFH DFFFFH 6FFFFH CFFFFH 67FFFH BFFFFH 5FFFFH AFFFFH 57FFFH 9FFFFH 4FFFFFH 8FFFFH 47FFFH 7FFFFH 3FFFFH 6FFFFH 37FFFH 5FFFFH 2FFFFH 4FFFFH 27FFFH 3FFFFH 1FFFFH 2FFFFH 17FFFH 1FFFFH OFFFFH OFFFFH 07FFFH

00000 H 00000H
MBM29LV800TA Sector Architecture
($\times 8$) $\quad(\times 16)$
FFFFFFH 7FFFFH
EFFFFH 77FFFH
DFFFFH 6FFFFH
CFFFFH 67FFFH
BFFFFH 5FFFFH
AFFFFH 57FFFH
9FFFFH 4FFFFH
8FFFFH 47FFFH
7FFFFH 3FFFFH
6FFFFH 37FFFH
5FFFFH 2FFFFH
4FFFFH 27FFFH
3FFFFH 1FFFFFH
2FFFFH 17FFFH
1FFFFH OFFFFH
0FFFFH 07FFFH
07FFFH 03FFFH
05FFFH 02FFFH
03FFFH 01FFFH
$00000 \mathrm{H} \quad 00000 \mathrm{H}$
MBM29LV800BA Sector Architecture

PRODUCT LINE UP

Part No.		MBM29LV800TA/MBM29LV800BA	
Ordering Part No. $\quad \mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}{ }_{-0.3 \mathrm{~V}}^{+0.6} \mathrm{~V}$	-90	-12	
Max. Address Access Time (ns)	90	120	
Max. CE Access Time (ns)	90	120	
Max. OE Access Time (ns)	35	50	

BLOCK DIAGRAM

CONNECTION DIAGRAMS

FBGA
(Top View)
Marking side

BGA-48P-M02

A1	А3	A2	A_{7}	A3	RY/BY	A4	WE	A5	A9	A6	A_{13}
B1	A_{4}	B2	A_{17}	B3	N.C.	B4	RESET	B5	A_{8}	B6	A_{12}
C1	A_{2}	C2	A_{6}	C3	A18	C4	N.C.	C5	A_{10}	C6	A_{14}
D1	A_{1}	D2	A_{5}	D3	N.C.	D4	N.C.	D5	A_{11}	D6	A_{15}
E1	A 0	E2	DQ0	E3	DQ_{2}	E4	DQ5	E5	DQ7	E6	A_{16}
F1	$\overline{C E}$	F2	DQ8	F3	DQ10	F4	DQ12	F5	DQ14	F6	BYTE
G1	OE	G2	DQ9	G3	DQ11	G4	Vcc	G5	DQ13	G6	DQ ${ }^{15} / \mathrm{A}_{-1}$
H1	Vss	H2	DQ1	H3	DQ3	H4	DQ4	H5	DQ6	H6	Vss

LOGIC SYMBOL

| | Table $1 \quad$ MBM29LV800TA/800BA Pin Configuration | |
| :--- | :--- | :--- | :--- |

Table 2 MBM29LV800TA/800BA User Bus Operations (BYTE = $\mathrm{V}_{\boldsymbol{H}}$)

Operation	CE	OE	WE	A	A_{1}	A6	A9	DQ ${ }_{0}$ to DQ_{15}	RESET
Auto-Select Manufacturer Code (1)	L	L	H	L	L	L	VID	Code	H
Auto-Select Device Code (1)	L	L	H	H	L	L	VID	Code	H
Read (3)	L	L	H	A_{0}	A_{1}	A_{6}	A9	Dout	H
Standby	H	X	X	X	X	X	X	HIGH-Z	H
Output Disable	L	H	H	X	X	X	X	HIGH-Z	H
Write (Program/Erase)	L	H	L	A	A_{1}	A_{6}	A9	Din	H
Enable Sector Protection (2), (4)	L	VID	Ъ	L	H	L	VID	X	H
Verify Sector Protection (2), (4)	L	L	H	L	H	L	VID	Code	H
Temporary Sector Unprotection	X	X	X	X	X	X	X	X	VID
Reset (Hardware)/Standby	X	X	X	X	X	X	X	HIGH-Z	L

Table 3 MBM29LV800TA/800BA User Bus Operations (BYTE = Vı)

Operation	CE	OE	WE	$\underset{\mathbf{A}-15}{\mathbf{D Q}_{15}}$	A0	A_{1}	A6	A9	DQ_{0} to DQ_{7}	RESET
Auto-Select Manufacturer Code (1)	L	L	H	L	L	L	L	VID	Code	H
Auto-Select Device Code (1)	L	L	H	L	H	L	L	VID	Code	H
Read (3)	L	L	H	A-1	A0	A_{1}	A_{6}	A9	Dout	H
Standby	H	X	X	X	X	X	X	X	HIGH-Z	H
Output Disable	L	H	H	X	X	X	X	X	HIGH-Z	H
Write (Program/Erase)	L	H	L	A-1	A0	A_{1}	A_{6}	A9	Din	H
Enable Sector Protection (2), (4)	L	VID	Ъ	L	L	H	L	VID	X	H
Verify Sector Protection (2), (4)	L	L	H	L	L	H	L	VID	Code	H
Temporary Sector Unprotection (5)	X	X	X	X	X	X	X	X	X	VID
Reset (Hardware)/Standby	X	X	X	X	X	X	X	X	HIGH-Z	L

Legend: $\mathrm{L}=\mathrm{V}_{\mathrm{IL}}, \mathrm{H}=\mathrm{V}_{\mathrm{IH}}, \mathrm{X}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{I}}, 乙\ulcorner=$ Pulse input. See DC Characteristics for voltage levels.
Notes: 1. Manufacturer and device codes may also be accessed via a command register write sequence. See Table 7.
2. Refer to the section on Sector Protection.
3. WE can be $\mathrm{V}_{\text {IL }}$ if $\overline{O E}$ is V_{IL}, $\overline{O E}$ at $\mathrm{V}_{\text {IH }}$ initiates the write operations.
4. $\mathrm{Vcc}=3.3 \mathrm{~V} \pm 10 \%$
5. It is also used for the extended sector protection.

ORDERING INFORMATION

Standard Products

Fujitsu standard products are available in several packages. The order number is formed by a combination of:
MBM29LV800

FUNCTIONAL DESCRIPTION

Read Mode

The MBM29LV800TA/BA have two control functions which must be satisfied in order to obtain data at the outputs. CE is the power control and should be used for a device selection. $O E$ is the output control and should be used to gate data to the output pins if a device is selected.

Address access time (tacc) is equal to the delay from stable addresses to valid output data. The chip enable access time (tcE) is the delay from stable addresses and stable CE to valid data at the output pins. The output enable access time is the delay from the falling edge of $\overline{O E}$ to valid data at the output pins. (Assuming the addresses have been stable for at least tacc-toe time.) When reading out a data without changing addresses after power-up, it is necessary to input hardware reset or change CE pin from " H " or " L "

Standby Mode

There are two ways to implement the standby mode on the MBM29LV800TA/BA devices, one using both the CE and RESET pins; the other via the RESET pin only.
When using both pins, a CMOS standby mode is achieved with CE and RESET inputs both held at $\mathrm{Vcc} \pm 0.3 \mathrm{~V}$. Under this condition the current consumed is less than $5 \mu \mathrm{~A}$. The device can be read with standard access time (tcE) from either of these standby modes. During Embedded Algorithm operation, Vcc active current (Iccz) is required even $\overline{\mathrm{CE}}=$ " H ".

When using the RESET pin only, a CMOS standby mode is achieved with RESET input held at Vss $\pm 0.3 \mathrm{~V}$ ($\mathrm{CE}=$ " H " or " L "). Under this condition the current is consumed is less than $5 \mu \mathrm{~A}$. Once the RESET pin is taken high, the device requires trH of wake up time before outputs are valid for read access.
In the standby mode the outputs are in the high impedance state, independent of the $\overline{O E}$ input.

Automatic Sleep Mode

There is a function called automatic sleep mode to restrain power consumption during read-out of MBM29LV800TA/800BA data. This mode can be used effectively with an application requested low power consumption such as handy terminals.

To activate this mode, MBM29LV800TA/800BA automatically switch themselves to low power mode when MBM29LV800TA/800BA addresses remain stably during access fine of 150 ns . It is not necessary to control CE, WE, and OE on the mode. Under the mode, the current consumed is typically $1 \mu \mathrm{~A}$ (CMOS Level).
Since the data are latched during this mode, the data are read-out continuously. If the addresses are changed, the mode is canceled automatically and MBM29LV800TA/800BA read-out the data for changed addresses.

Output Disable

With the $\overline{\mathrm{OE}}$ input at a logic high level $\left(\mathrm{V}_{\boldsymbol{н}}\right)$, output from the devices are disabled. This will cause the output pins to be in a high impedance state.

Autoselect

The autoselect mode allows the reading out of a binary code from the devices and will identify its manufacturer and type. This mode is intended for use by programming equipment for the purpose of automatically matching the devices to be programmed with its corresponding programming algorithm. This mode is functional over the entire temperature range of the devices.
To activate this mode, the programming equipment must force $\mathrm{V}_{\mathrm{ID}}(11.5 \mathrm{~V}$ to 12.5 V) on address pin A 9 . Two identifier bytes may then be sequenced from the devices outputs by toggling address A_{0} from V_{IL} to V_{I}. All addresses are DON'T CARES except $\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}_{6}$, and A_{-1}. (See Table 4.1.)

The manufacturer and device codes may also be read via the command register, for instances when the MBM29LV800TA/BA are erased or programmed in a system without access to high voltage on the A9 pin. The command sequence is illustrated in Table 7. (Refer to Autoselect Command section.)
Byte 0 ($\mathrm{A}_{0}=\mathrm{V}_{I I}$) represents the manufacturer's code (Fujitsu $=04 \mathrm{H}$) and ($\mathrm{A}_{0}=\mathrm{V}_{\boldsymbol{H}}$) represents the device identifier code (MBM29LV800TA $=$ DAH and MBM29LV800BA $=5 B H$ for $\times 8$ mode; MBM29LV800TA $=22 D A H$ and MBM29LV800BA $=225 \mathrm{BH}$ for $\times 16$ mode). These two bytes/words are given in the tables 4.1 and 4.2 . All identifiers for manufactures and device will exhibit odd parity with DQ_{7} defined as the parity bit. In order to read the proper device codes when executing the autoselect, A_{1} must be VIL. (See Tables 4.1 and 4.2.)

Table 4.1 MBM29LV800TA/800BA Sector Protection Verify Autoselect Codes

Type			A_{12} to A_{18}	A6	A_{1}	A0	A-1 ${ }^{+1}$	Code (HEX)
Manufacture's Code			X	VIL	VIL	VIL	VIL	04H
Device Code	MBM29LV800TA	Byte	X	VIL	VIL	VIH	VIL	DAH
		Word					X	22DAH
	MBM29LV800BA	Byte	X	VIL	VIL	VIH	VIL	5BH
		Word					X	225BH
Sector Protection			Sector Addresses	VIL	VIH	VIL	VIL	01H ${ }^{2}$

*1: A-1 is for Byte mode.
*2: Outputs 01 H at protected sector addresses and outputs 00 H at unprotected sector addresses.
Table 4 . 2 Expanded Autoselect Code Table

Type			Code	DQ15	DQ14	DQ13	DQ ${ }_{12}$	DQ ${ }_{11}$	DQ10	DQ9	DQ8	DQ_{7}	DQ ${ }_{6}$	DQ ${ }_{5}$	DQ_{4}	DQ3	DQ_{2}	DQ ${ }_{1}$	DQ 0
Manufacturer's Code			04H	A.1/0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Device Code	MBM29LV800TA	(B)	DAH	A-1	HI-Z	1	1	0	1	1	0	1	0						
		(W)	22DAH	0	0	1	0	0	0	1	0	1	1	0	1	1	0	1	0
	MBM29LV800BA	(B)	5BH	A-1	HI-Z	0	1	0	1	1	0	1	1						
		(W)	225BH	0	0	1	0	0	0	1	0	0	1	0	1	1	0	1	1
Sector Protection			01H	A-1/0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

(B): Byte mode
(W): Word mode

Write

Device erasure and programming are accomplished via the command register. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device.

The command register itself does not occupy any addressable memory location. The register is a latch used to store the commands, along with the address and data information needed to execute the command. The command register is written by bringing WE to V_{LL}, while CE is at V_{IL} and OE is at V_{IH}. Addresses are latched on the falling edge of WE or CE, whichever happens later; while data is latched on the rising edge of WE or CE, whichever happens first. Standard microprocessor write timings are used.

Refer to AC Write Characteristics and the Erase/Programming Waveforms for specific timing parameters.

Sector Protection

The MBM29LV800TA/BA feature hardware sector protection. This feature will disable both program and erase operations in any number of sectors (0 through 18). The sector protection feature is enabled using programming equipment at the user's site. The devices are shipped with all sectors unprotected. Alternatively, Fujitsu may program and protect sectors in the factory prior to shiping the device.

To activate this mode, the programming equipment must force V_{10} on address pin A_{9} and control pin $\overline{\mathrm{OE}}$, (suggest $\mathrm{V}_{I D}=11.5 \mathrm{~V}$), $\overline{C E}=\mathrm{V}_{\mathrm{IL}}$, and $\mathrm{A}_{6}=\mathrm{V}_{\mathrm{IL}}$. The sector addresses ($\mathrm{A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12}) should be set to the sector to be protected. Tables 5 and 6 define the sector address for each of the nineteen (19) individual sectors. Programming of the protection circuitry begins on the falling edge of the WE pulse and is terminated with the rising edge of the same. Sector addresses must be held constant during the WE pulse. See Figures 16 and 24 for sector protection waveforms and algorithm.

To verify programming of the protection circuitry, the programming equipment must force V_{10} on address pin A_{9} with $\overline{C E}$ and $\overline{O E}$ at V_{IL} and $W E$ at V_{14}. Scanning the sector addresses ($\mathrm{A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12}) while $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ will produce a logical " 1 " code at device output D_{0} for a protected sector. Otherwise the devices will read 00 H for unprotected sector. In this mode, the lower order addresses, except for A_{0}, A_{1}, and A_{6} are DON'T CARES. Address locations with $\mathrm{A}_{1}=\mathrm{V}_{I L}$ are reserved for Autoselect manufacturer and device codes. A-1 requires to apply to VIL on byte mode.

It is also possible to determine if a sector is protected in the system by writing an Autoselect command. Performing a read operation at the address location XX02H, where the higher order addresses ($\mathrm{A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$, and A_{12}) are the desired sector address will produce a logical " 1 " at DQ_{0} for a protected sector. See Tables 4.1 and 4.2 for Autoselect codes.

Temporary Sector Unprotection

This feature allows temporary unprotection of previously protected sectors of the MBM29LV800TA/BA devices in order to change data. The Sector Unprotection mode is activated by setting the RESET pin to high voltage (12 V). During this mode, formerly protected sectors can be programmed or erased by selecting the sector addresses. Once the 12 V is taken away from the RESET pin, all the previously protected sectors will be protected again. See Figures 17 and 25.

RESET

Hardware Reset

The MBM29LV800TA/BA devices may be reset by driving the RESET pin to VIL. The RESET pin has a pulse requirement and has to be kept low $\left(\mathrm{V}_{\mathrm{I}}\right)$ for at least 500 ns in order to properly reset the internal state machine. Any operation in the process of being executed will be terminated and the internal state machine will be reset to the read mode $20 \mu \mathrm{~s}$ after the RESET pin is driven low. Furthermore, once the RESET pin goes high, the devices require an additional try before it will allow read access. When the RESET pin is low, the devices will be in the standby mode for the duration of the pulse and all the data output pins will be tri-stated. If a hardware reset occurs during a program or erase operation, the data at that particular location will be corrupted. Please note that the RY/BY output signal should be ignored during the RESET pulse. See Figure 12 for the timing diagram. Refer to Temporary Sector Unprotection for additional functionality.

If hardware reset occurs during Embedded Erase Algorithm, there is a possibility that the erasing sector(s) cannot be used.

Table 5 Sector Address Tables (MBM29LV800TA)

Sector Address	A18	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	Address Range ($\times 8$)	Address Range ($\times 16$)
SA0	0	0	0	0	X	X	X	00000H to OFFFFFH	00000H to 07FFFH
SA1	0	0	0	1	X	X	X	10000 H to 1FFFFFH	08000H to 0FFFFFH
SA2	0	0	1	0	X	X	X	20000 H to 2FFFFFH	10000 H to 17FFFH
SA3	0	0	1	1	X	X	X	30000 H to 3FFFFFH	18000H to 1FFFFFH
SA4	0	1	0	0	X	X	X	40000 H to 4FFFFH	20000H to 27FFFH
SA5	0	1	0	1	X	X	X	50000 H to 5FFFFH	28000 H to 2FFFFH
SA6	0	1	1	0	X	X	X	60000 H to 6FFFFFH	30000 H to 37FFFH
SA7	0	1	1	1	X	X	X	70000 H to 7FFFFH	38000 H to 3FFFFH
SA8	1	0	0	0	X	X	X	80000 H to 8FFFFFH	40000 H to 47FFFH
SA9	1	0	0	1	X	X	X	90000 H to 9FFFFH	48000H to 4FFFFH
SA10	1	0	1	0	X	X	X	A0000H to AFFFFH	50000 H to 57FFFH
SA11	1	0	1	1	X	X	X	B0000H to BFFFFH	58000 H to 5FFFFH
SA12	1	1	0	0	X	X	X	C 0000 H to CFFFFFH	60000 H to 67FFFH
SA13	1	1	0	1	X	X	X	D0000H to DFFFFH	68000H to 6FFFFH
SA14	1	1	1	0	X	X	X	E0000H to EFFFFH	70000H to 77FFFH
SA15	1	1	1	1	0	X	X	F0000H to F7FFFH	78000H to 7BFFFH
SA16	1	1	1	1	1	0	0	F8000H to F9FFFH	7C000H to 7CFFFH
SA17	1	1	1	1	1	0	1	FA000H to FBFFFH	7D000H to 7DFFFH
SA18	1	1	1	1	1	1	X	FC000H to FFFFFH	7E000H to 7FFFFH

MBM29LV800TA-90/-12/MBM29LV800BA-90/-12

Table 6 Sector Address Tables (MBM29LV800BA)

Sector Address	A18	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}	A_{12}	Address Range ($\times 8$)	Address Range ($\times 16$)
SA0	0	0	0	0	0	0	X	00000H to 03FFFF	00000 H to 01FFFH
SA1	0	0	0	0	0	1	0	04000H to 05FFFH	02000H to 02FFFH
SA2	0	0	0	0	0	1	1	06000H to 07FFFH	03000H to 03FFFH
SA3	0	0	0	0	1	X	X	08000H to OFFFFFH	04000H to 07FFFH
SA4	0	0	0	1	X	X	X	10000 H to 1FFFFFH	08000H to 0FFFFH
SA5	0	0	1	0	X	X	X	20000 H to 2FFFFFH	10000H to 17FFFH
SA6	0	0	1	1	X	X	X	30000 H to 3FFFFFH	18000 H to 1FFFFFH
SA7	0	1	0	0	X	X	X	40000 H to 4FFFFFH	20000 H to 27FFFH
SA8	0	1	0	1	X	X	X	50000 H to 5FFFFH	28000 H to 2FFFFH
SA9	0	1	1	0	X	X	X	60000 H to 6FFFFFH	30000 H to 37FFFH
SA10	0	1	1	1	X	X	X	70000 H to 7FFFFFH	38000 H to 3FFFFH
SA11	1	0	0	0	X	X	X	80000 H to 8FFFFH	40000 H to 47FFFH
SA12	1	0	0	1	X	X	X	90000 H to 9FFFFH	48000H to 4FFFFH
SA13	1	0	1	0	X	X	X	A0000H to AFFFFH	50000 H to 57FFFH
SA14	1	0	1	1	X	X	X	B0000H to BFFFFH	58000 H to 5FFFFH
SA15	1	1	0	0	X	X	X	C 0000 H to CFFFFH	60000 H to 67FFFH
SA16	1	1	0	1	X	X	X	D0000H to DFFFFF	68000H to 6FFFFH
SA17	1	1	1	0	X	X	X	E0000H to EFFFFH	70000H to 77FFFH
SA18	1	1	1	1	X	X	X	F0000H to FFFFFFH	78000H to 7FFFFH

Table 7 MBM29LV800TA/800BA Standard Command Definitions

Command Sequence		Bus Cycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read/Write Cycle		Fifth Bus Write Cycle		Sixth Bus Write Cycle		
		Addr.	Data												
Read/Reset	$\begin{array}{\|l\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$		1	XXXH	FOH	-	-	-	-	-	-	-	-	-	-
Read/Reset	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	3	555H	AAH	$\frac{2 \mathrm{AAH}}{555 \mathrm{H}}$	55H	$\begin{aligned} & 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$	FOH	RA	RD	-	-	-	-	
Autoselect	$\begin{array}{\|l\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	3	555AH	AAH		55H		90H	-	-	-	-	-	-	
Program	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	4	55AH	AAH	$\frac{2 \mathrm{AAH}}{555 \mathrm{H}}$	55H	$\begin{aligned} & 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$	AOH	PA	PD	-	-	-	-	
Chip Erase	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	6	555H	AAH	2 AAH	55H	555H	80H	555H	AAH	2 AAH	55H	555H AAAH	10H	
Sector Erase	$\begin{array}{\|c\|} \hline \text { Word } \\ \hline \text { Byte } \\ \hline \end{array}$	6	555H	AAH	$\frac{2 \mathrm{AAH}}{555 \mathrm{H}}$	55H	$\begin{aligned} & \text { 555H } \\ & \hline \text { AAAH } \end{aligned}$	80H	$\begin{aligned} & 555 \mathrm{H} \\ & \hline \text { AAAH } \end{aligned}$	AAH	$\frac{2 \mathrm{AAH}}{555 \mathrm{H}}$	55H	SA	30 H	
Sector Erase Suspend			Erase can be suspended during sector erase with Addr. ("H" or "L"). Data (BOH)												
Sector Erase Resume			Erase can be resumed after suspend with Addr. ("H" or "L"). Data (30H)												

Notes: 1. Address bits A_{11} to $\mathrm{A}_{18}=\mathrm{X}=$ " H " or " L " for all address commands except or Program Address (PA) and Sector Address (SA)
2. Bus operations are defined in Tables 2 and 3.
3. $R A=$ Address of the memory location to be read
$\mathrm{PA}=$ Address of the memory location to be programmed
Addresses are latched on the falling edge of the WE pulse.
$S A=$ Address of the sector to be erased. The combination of $A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12} will uniquely select any sector.
4. $R D=$ Data read from location RA during read operation.

PD = Data to be programmed at location PA. Data is latched on the falling edge of WE.
5. The system should generate the following address patterns:

Word Mode: 555H or 2AAH to addresses A_{0} to A_{10}
Byte Mode: AAAH or 555H to addresses A-1 and Ao to A10
6. Both Read/Reset commands are functionally equivalent, resetting the device to the read mode.

Table 8 MBM29LV800TA/BA Extended Command Definitions

Command Sequence		Bus Write Cycles Req'd	First Bus Write Cycle		Second Bus Write Cycle		Third Bus Write Cycle		Fourth Bus Read Cycle		
		Addr	Data	Addr	Data	Addr	Data	Addr	Data		
Set to	Word		3	555H	AAH	2AAH	55H	555H	20 H	-	-
Fast Mode	Byte	AAAH		555H		AAAH					
Fast Program	Word	2	XXXH	AOH	PA	PD	-	-	-	-	
(Note)	Byte		XXXH								
Reset from	Word	2	XXXH	90H	XXXH	FOH	-	-	-	-	
(Note)	Byte		XXXH		XXXH						
Extended	Word	4	XXXH	60H	SPA	60 H	SPA	40H	SPA	SD	
Sector Protect	Byte										

SPA : Sector address to be protected. Set sector address (SA) and $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$.
SD : Sector protection verify data. Output 01 H at protected sector addresses and output 00 H at unprotected sector addresses.

Note: This command is valid while Fast Mode.

Command Definitions

Device operations are selected by writing specific address and data sequences into the command register. Writing incorrect address and data values or writing them in the improper sequence will reset the devices to the read mode. Table 7 defines the valid register command sequences. Note that the Erase Suspend (BOH) and Erase Resume $(30 \mathrm{H})$ commands are valid only while the Sector Erase operation is in progress. Moreover both Read/Reset commands are functionally equivalent, resetting the device to the read mode. Please note that commands are always written at DQ_{0} to DQ_{7} and DQ_{8} to DQ_{15} bits are ignored.

Read/Reset Command

In order to return from Autoselect mode or Exceeded Timing Limits ($\mathrm{DQ}_{5}=1$) to read/reset mode, the read/reset operation is initiated by writing the Read/Reset command sequence into the command register. Microprocessor read cycles retrieve array data from the memory. The devices remain enabled for reads until the command register contents are altered.

The devices will automatically power-up in the read/reset state. In this case, a command sequence is not required to read data. Standard microprocessor read cycles will retrieve array data. This default value ensures that no spurious alteration of the memory content occurs during the power transition. Refer to the AC Read Characteristics and Waveforms for the specific timing parameters.

Autoselect Command

Flash memories are intended for use in applications where the local CPU alters memory contents. As such, manufacture and device codes must be accessible while the devices reside in the target system. PROM programmers typically access the signature codes by raising Ag to a high voltage. However, multiplexing high voltage onto the address lines is not generally desired system design practice.

The device contains an Autoselect command operation to supplement traditional PROM programming methodology. The operation is initiated by writing the Autoselect command sequence into the command register. Following the command write, a read cycle from address XXOOH retrieves the manufacture code of 04 H . A read cycle from address XX01H for $\times 16(\mathrm{XX02H}$ for $\times 8$) returns the device code (MBM29LV800TA $=$ DAH and MBM29LV800BA $=5$ BH for $\times 8$ mode; MBM29LV800TA $=22 D A H$ and MBM29LV800BA $=225 \mathrm{BH}$ for $\times 16$ mode). (See Tables 4.1 and 4.2.) All manufacturer and device codes will exhibit odd parity with DQ7 defined as the parity bit. Sector state (protection or unprotection) will be informed by address $\mathrm{XX02H}$ for $\times 16$ ($\mathrm{XX04H}$ for $\times 8$).
Scanning the sector addresses ($A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$, and A_{12}) while $\left(A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ will produce a logical " 1 " at device output DQo for a protected sector. The programming verification should be perform margin mode on the protected sector. (See Tables 2 and 3.)

To terminate the operation, it is necessary to write the Read/Reset command sequence into the register, and also to write the Autoselect command during the operation, execute it after writing Read/Reset command sequence.

Byte/Word Programming

The devices are programmed on a byte-by-byte (or word-by-word) basis. Programming is a four bus cycle operation. There are two "unlock" write cycles. These are followed by the program set-up command and data write cycles. Addresses are latched on the falling edge of CE or WE, whichever happens later and the data is latched on the rising edge of CE or WE, whichever happens first. The rising edge of CE or WE (whichever happens first) begins programming. Upon executing the Embedded Program Algorithm command sequence, the system is not required to provide further controls or timings. The device will automatically provide adequate internally generated program pulses and verify the programmed cell margin.

The automatic programming operation is completed when the data on DQ7 is equivalent to data written to this bit at which time the devices return to the read mode and addresses are no longer latched. (See Table 9, Hardware Sequence Flags.) Therefore, the devices require that a valid address to the devices be supplied by the system at this particular instance of time. Hence, Data Polling must be performed at the memory location which is being programmed.

Any commands written to the chip during this period will be ignored. If hardware reset occurs during the programming operation, it is impossible to guarantee the data are being written.

Programming is allowed in any sequence and across sector boundaries. Beware that a data " 0 " cannot be programmed back to a " 1 ". Attempting to do so may either hang up the device or result in an apparent success according to the data polling algorithm but a read from read/reset mode will show that the data is still " 0 ". Only erase operations can convert " 0 "s to " 1 "s.

Figure 20 illustrates the Embedded Program ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

Chip Erase

Chip erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the chip erase command.
Chip erase does not require the user to program the device prior to erase. Upon executing the Embedded Erase Algorithm command sequence the devices will automatically program and verify the entire memory for an all zero data pattern prior to electrical erase (Preprogram function). The system is not required to provide any controls or timings during these operations.

The automatic erase begins on the rising edge of the last WE pulse in the command sequence and terminates when the data on DQ7 is " 1 " (See Write Operation Status section.) at which time the device returns to read the mode.

Chip Erase Time; Sector Erase Time \times All sectors + Chip Program Time (Preprogramming)
Figure 21 illustrates the Embedded Erase ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

Sector Erase

Sector erase is a six bus cycle operation. There are two "unlock" write cycles. These are followed by writing the "set-up" command. Two more "unlock" write cycles are then followed by the Sector Erase command. The sector address (any address location within the desired sector) is latched on the falling edge of WE, while the command (Data $=30 \mathrm{H}$) is latched on the rising edge of WE. After time-out of $50 \mu \mathrm{~s}$ from the rising edge of the last sector erase command, the sector erase operation will begin.
Multiple sectors may be erased concurrently by writing the six bus cycle operations on Table 7. This sequence is followed with writes of the Sector Erase command to addresses in other sectors desired to be concurrently erased. The time between writes must be less than 50μ s otherwise that command will not be accepted and erasure will start. It is recommended that processor interrupts be disabled during this time to guarantee this condition. The interrupts can be re-enabled after the last Sector Erase command is written. A time-out of $50 \mu \mathrm{~s}$ from the rising edge of the last WE will initiate the execution of the Sector Erase command(s). If another falling edge of the WE occurs within the 50μ s time-out window the timer is reset. (Monitor DQ 3 to determine if the sector erase timer window is still open, see section DQ 3 , Sector Erase Timer.) Any command other than Sector Erase or Erase Suspend during this time-out period will reset the devices to the read mode, ignoring the previous command string. Resetting the devices once execution has begun will corrupt the data in the sector. In that case, restart the erase on those sectors and allow them to complete. (Refer to the Write Operation Status section for Sector Erase Timer operation.) Loading the sector erase buffer may be done in any sequence and with any number of sectors (0 to 18).

Sector erase does not require the user to program the devices prior to erase. The devices automatically program all memory locations in the sector(s) to be erased prior to electrical erase (Preprogram function). When erasing a sector or sectors the remaining unselected sectors are not affected. The system is not required to provide any controls or timings during these operations.

The automatic sector erase begins after the $50 \mu \mathrm{~s}$ time out from the rising edge of the WE pulse for the last sector erase command pulse and terminates when the data on DQ7 is "1" (See Write Operation Status section.) at which time the devices return to the read mode. Data polling must be performed at an address within any of the sectors being erased. Multiple Sector Erase Time; [Sector Erase Time + Sector Program Time (Preprogramming)] \times Number of Sector Erase

Figure 21 illustrates the Embedded Erase ${ }^{\text {TM }}$ Algorithm using typical command strings and bus operations.

Erase Suspend

The Erase Suspend command allows the user to interrupt a Sector Erase operation and then perform data reads from or programs to a sector not being erased. This command is applicable ONLY during the Sector Erase operation which includes the time-out period for sector erase. The Erase Suspend command will be ignored if written during the Chip Erase operation or Embedded Program Algorithm. Writting the Erase Suspend command during the Sector Erase time-out results in immediate termination of the time-out period and suspension of the erase operation.

Writing the Erase Resume command resumes the erase operation. The addresses are DON'T CARES when writing the Erase Suspend or Erase Resume command.

When the Erase Suspend command is written during the Sector Erase operation, the device will take a maximum of 20μ s to suspend the erase operation. When the devices have entered the erase-suspended mode, the RY/ BY output pin and the DQ7 bit will be at logic "1", and DQ6 will stop toggling. The user must use the address of the erasing sector for reading DQ_{6} and DQ_{7} to determine if the erase operation has been suspended. Further writes of the Erase Suspend command are ignored.

When the erase operation has been suspended, the devices default to the erase-suspend-read mode. Reading data in this mode is the same as reading from the standard read mode except that the data must be read from sectors that have not been erase-suspended. Successively reading from the erase-suspended sector while the device is in the erase-suspend-read mode will cause DQ_{2} to toggle. (See the section on DQ_{2}.)

After entering the erase-suspend-read mode, the user can program the device by writing the appropriate command sequence for Program. This program mode is known as the erase-suspend-program mode. Again, programming in this mode is the same as programming in the regular Program mode except that the data must be programmed to sectors that are not erase-suspended. Successively reading from the erase-suspended sector while the devices are in the erase-suspend-program mode will cause DQ to toggle. The end of the erasesuspended Program operation is detected by the RY/BY output pin, Data polling of DQ ${ }_{7}$, or by the Toggle Bit I (DQ_{6}) which is the same as the regular Program operation. Note that DQ_{7} must be read from the Program address while DQ6 can be read from any address.

To resume the operation of Sector Erase, the Resume command (30 H) should be written. Any further writes of the Resume command at this point will be ignored. Another Erase Suspend command can be written after the chip has resumed erasing.

Extended Command

(1) Fast Mode

MBM29LV800TA/BA has Fast Mode function. This mode dispenses with the initial two unclock cycles required in the standard program command sequence by writing Fast Mode command into the command register. In this mode, the required bus cycle for programming is two cycles instead of four bus cycles in standard program command. (Do not write erase command in this mode.) The read operation is also executed after exiting this mode. To exit this mode, it is necessary to write Fast Mode Reset command into the command register. (Refer to the Figure 27 Extended algorithm.) The Vcc active current is required even $\mathrm{CE}=\mathrm{V}_{\boldsymbol{\mathrm { H }}}$ during Fast Mode.
(2) Fast Programming

During Fast Mode, the programming can be executed with two bus cycles operation. The Embedded Program Algorithm is executed by writing program set-up command (AOH) and data write cycles (PA/PD). (Refer to the Figure 27 Extended algorithm.)
(3) Extended Sector Protection

In addition to normal sector protection, the MBM29LV800TA/BA has Extended Sector Protection as extended function. This function enable to protect sector by forcing VID on RESET pin and write a commnad sequence. Unlike conventional procedure, it is not necessary to force Vid and control timing for control pins. The only RESET pin requires VID for sector protection in this mode. The extended sector protect requires VID on RESET pin. With this condition, the operation is initiated by writing the set-up command $(60 \mathrm{H})$ into the command register. Then, the sector addresses pins ($\mathrm{A}_{18}, \mathrm{~A}_{17}, \mathrm{~A}_{16}, \mathrm{~A}_{15}, \mathrm{~A}_{14}, \mathrm{~A}_{13}$ and A_{12}) and ($\left.\mathrm{A}_{6}, \mathrm{~A}_{1}, \mathrm{~A}_{0}\right)=(0,1,0)$ should be set to the sector to be protected (recommend to set VIL for the other addresses pins), and write extended sector protect command $(60 \mathrm{H})$. A sector is typically protected in $150 \mu \mathrm{~s}$. To verify programming of the protection circuitry, the sector addresses pins ($A_{18}, A_{17}, A_{16}, A_{15}, A_{14}, A_{13}$ and A_{12}) and ($\left.A_{6}, A_{1}, A_{0}\right)=(0,1,0)$ should be set and write a command (40H). Following the command write, a logical "1" at device output DQ0 will produce for protected sector in the read operation. If the output data is logical " 0 ", please repeat to write extended sector protect command (60 H) again. To terminate the operation, it is necessary to set RESET pin to $\mathrm{V}_{\text {Iн }}$.

Write Operation Status

Table 9 Hardware Sequence Flags

Status			DQ7	DQ6	DQ5	DQ3	DQ2
In Progress	Embedded Program Algorithm		DQ_{7}	Toggle	0	0	1
	Embedded Erase Algorithm		0	Toggle	0	1	Toggle
	Erase Suspended Mode	Erase Suspend Read (Erase Suspended Sector)	1	1	0	0	Toggle
		Erase Suspend Read (Non-Erase Suspended Sector)	Data	Data	Data	Data	Data
		Erase Suspend Program (Non-Erase Suspended Sector)	DQ7	Toggle (Note 1)	0	0	$\left(\begin{array}{c} 1 \\ (\text { Note } 2) \end{array}\right.$
Exceeded Time Limits	Embedded Program Algorithm		DQ7	Toggle	1	0	1
	Embedded Erase Algorithm		0	Toggle	1	1	N/A
	Erase Suspended Mode	Erase Suspend Program (Non-Erase Suspended Sector)	DQ_{7}	Toggle	1	0	N/A

Notes: 1. Performing successive read operations from any address will cause DQ_{6} to toggle.
2. Reading the byte address being programmed while in the erase-suspend program mode will indicate logic "1" at the DQ2 bit. However, successive reads from the erase-suspended sector will cause DQ2 to toggle.
3. DQ_{0} and DQ_{1} are reserve pins for future use.
4. DQ_{4} is Fujitsu internal use only.

MBM29LV800TA-90/-12/MBM29LV800BA-90/-12

DQ7

Data Polling
The MBM29LV800TA/BA devices feature Data Polling as a method to indicate to the host that the Embedded Algorithms are in progress or completed. During the Embedded Program Algorithm an attempt to read the devices will produce the complement of the data last written to DQ7. Upon completion of the Embedded Program Algorithm, an attempt to read the device will produce the true data last written to DQ7. During the Embedded Erase Algorithm, an attempt to read the device will produce a " 0 " at the DQ_{7} output. Upon completion of the Embedded Erase Algorithm an attempt to read the device will produce a "1" at the DQ7 output. The flowchart for Data Polling (DQ7) is shown in Figure 22.

For chip erase and sector erase, the Data Polling is valid after the rising edge of the sixth WE pulse in the six write pulse sequence. Data Polling must be performed at sector address within any of the sectors being erased and not a protected sector. Otherwise, the status may not be valid. Once the Embedded Algorithm operation is close to being completed, the MBM29LV800TA/BA data pins (DQ7) may change asynchronously while the output enable ($\overline{\mathrm{OE}}$) is asserted low. This means that the devices are driving status information on DQ_{7} at one instant of time and then that byte's valid data at the next instant of time. Depending on when the system samples the DQ7 output, it may read the status or valid data. Even if the device has completed the Embedded Algorithm operation and DQ has a valid data, the data outputs on D_{0} to DQ_{6} may be still invalid. The valid data on DQ 0 to DQ7 will be read on the successive read attempts.

The Data Polling feature is only active during the Embedded Programming Algorithm, Embedded Erase Algorithm or sector erase time-out. (See Table 9.)

See Figure 9 for the Data Polling timing specifications and diagrams.
DQ6

Toggle Bit I

The MBM29LV800TA/BA also feature the "Toggle Bit l" as a method to indicate to the host system that the Embedded Algorithms are in progress or completed.

During an Embedded Program or Erase Algorithm cycle, successive attempts to read (OE toggling) data from the devices will result in DQ6 toggling between one and zero. Once the Embedded Program or Erase Algorithm cycle is completed, DQ6 will stop toggling and valid data will be read on the next successive attempts. During programming, the Toggle Bit I is valid after the rising edge of the fourth WE pulse in the four write pulse sequence. For chip erase and sector erase, the Toggle Bit I is valid after the rising edge of the sixth WE pulse in the six write pulse sequence. The Toggle Bit I is active during the sector time out.

In programming, if the sector being written to is protected, the toggle bit will toggle for about $2 \mu \mathrm{~s}$ and then stop toggling without the data having changed. In erase, the devices will erase all the selected sectors except for the ones that are protected. If all selected sectors are protected, the chip will toggle the toggle bit for about $100 \mu \mathrm{~s}$ and then drop back into read mode, having changed none of the data.

Either CE or $\overline{O E}$ toggling will cause the DQ_{6} to toggle. In addition, an Erase Suspend/Resume command will cause the DQ6 to toggle.

See Figure 10 for the Toggle Bit I timing specifications and diagrams.

DQ5

Exceeded Timing Limits

DQ5 will indicate if the program or erase time has exceeded the specified limits (internal pulse count). Under these conditions DQ5 will produce a " 1 ". This is a failure condition which indicates that the program or erase cycle was not successfully completed. Data Polling is the only operating function of the devices under this condition. The CE circuit will partially power down the device under these conditions (to approximately 2 mA). The OE and WE pins will control the output disable functions as described in Tables 2 and 3.

The DQ5 failure condition may also appear if a user tries to program a non blank location without erasing. In this case the devices lock out and never complete the Embedded Algorithm operation. Hence, the system never reads a valid data on DQ_{7} bit and $D Q_{6}$ never stops toggling. Once the devices have exceeded timing limits, the DQ_{5} bit will indicate a "1." Please note that this is not a device failure condition since the devices were incorrectly used. If this occurs, reset the device with command sequence.
D_{3}
Sector Erase Timer
After the completion of the initial sector erase command sequence the sector erase time-out will begin. DQ_{3} will remain low until the time-out is complete. Data Polling and Toggle Bit are valid after the initial sector erase command sequence.

If Data Polling or the Toggle Bit I indicates the device has been written with a valid erase command, DQ 3 may be used to determine if the sector erase timer window is still open. If DQ_{3} is high ("1") the internally controlled erase cycle has begun; attempts to write subsequent commands to the device will be ignored until the erase operation is completed as indicated by Data Polling or Toggle Bit I. If DQ 3 is low ("0"), the device will accept additional sector erase commands. To insure the command has been accepted, the system software should check the status of DQ_{3} prior to and following each subsequent Sector Erase command. If DQ_{3} were high on the second status check, the command may not have been accepted.

See Table 9: Hardware Sequence Flags.

DQ_{2}

Toggle Bit II

This toggle bit II, along with DQ6, can be used to determine whether the devices are in the Embedded Erase Algorithm or in Erase Suspend.

Successive reads from the erasing sector will cause DQ2 to toggle during the Embedded Erase Algorithm. If the devices are in the erase-suspended-read mode, successive reads from the erase-suspended sector will cause DQ2 to toggle. When the devices are in the erase-suspended-program mode, successive reads from the byte address of the non-erase suspended sector will indicate a logic " 1 " at the DQ2 bit.
DQ_{6} is different from DQ_{2} in that DQ_{6} toggles only when the standard program or Erase, or Erase Suspend Program operation is in progress. The behavior of these two status bits, along with that of DQ_{7}, is summarized as follows:

For example, DQ_{2} and DQ_{6} can be used together to determine if the erase-suspend-read mode is in progress. (DQ_{2} toggles while DQ_{6} does not.) See also Table 9 and Figure 18.

Furthermore, DQ_{2} can also be used to determine which sector is being erased. When the device is in the erase mode, DQ_{2} toggles if this bit is read from an erasing sector.

Mode	DQ $_{7}$	DQ $_{6}$	DQ $_{\mathbf{2}}$
Program	DQ_{7}	Toggle	1
Erase	0	Toggle	Toggle
Erase-Suspend Read (Erase-Suspended Sector) (Note 1)	1	1	Toggle
Erase-Suspend Program	DQ_{7}	Toggle (Note 1)	1 (Note 2)

Notes: 1. Performing successive read operations from any address will cause DQ_{6} to toggle.
2. Reading the byte address being programmed while in the erase-suspend program mode will indicate logic "1" at the DQ2 bit. However, successive reads from the erase-suspended sector will cause DQ_{2} to toggle.

RY/BY

Ready/Busy

> The MBM29LV800TA/BA provide a RY/BY open-drain output pin as a way to indicate to the host system that the Embedded Algorithms are either in progress or has been completed. If the output is low, the devices are busy with either a program or erase operation. If the output is high, the devices are ready to accept any read/write or erase operation. When the RY/BY pin is low, the devices will not accept any additional program or erase commands. If the MBM29LV800TA/BA are placed in an Erase Suspend mode, the RY/BY output will be high.

> During programming, the RY/BY pin is driven low after the rising edge of the fourth WE pulse. During an erase operation, the RY/BY pin is driven low after the rising edge of the sixth WE pulse. The RY/BY pin will indicate a busy condition during the RESET pulse. Refer to Figure 11 and 12 for a detailed timing diagram. The RY/BY pin is pulled high in standby mode.

Since this is an open-drain output, RY/BY pins can be tied together in parallel with a pull-up resistor to V_{cc}.

Byte/Word Configuration

The BYTE pin selects the byte (8-bit) mode or word (16-bit) mode for the MBM29LV800TA/BA devices. When this pin is driven high, the devices operate in the word (16-bit) mode. The data is read and programmed at DQo to DQ15. When this pin is driven low, the devices operate in byte (8 -bit) mode. Under this mode, the $\mathrm{DQ}_{15} / \mathrm{A}_{-1}$ pin becomes the lowest address bit and DQ_{8} to DQ_{14} bits are tri-stated. However, the command bus cycle is always an 8-bit operation and hence commands are written at DQ_{0} to DQ_{7} and the DQ_{8} to DQ_{15} bits are ignored. Refer to Figures 13, 14 and 15 for the timing diagram.

Data Protection

The MBM29LV800TA/BA are designed to offer protection against accidental erasure or programming caused by spurious system level signals that may exist during power transitions. During power up the devices automatically reset the internal state machine in the Read mode. Also, with its control register architecture, alteration of the memory contents only occurs after successful completion of specific multi-bus cycle command sequences.

The devices also incorporate several features to prevent inadvertent write cycles resulting form Vcc power-up and power-down transitions or system noise.

MBM29LV800TA-90/-12/MBM29LV800BA-90/-12

Low Vcc Write Inhibit

To avoid initiation of a write cycle during Vcc power-up and power-down, a write cycle is locked out for Vcc less than 2.3 V (typically 2.4 V). If V cc < V LKo, the command register is disabled and all internal program/erase circuits are disabled. Under this condition the device will reset to the read mode. Subsequent writes will be ignored until the V_{cc} level is greater than $\mathrm{V}_{\text {Lкo. It }}$ is the users responsibility to ensure that the control pins are logically correct to prevent unintentional writes when V cc is above 2.3 V .

If Embedded Erase Algorithm is interrupted, there is possibility that the erasing sector(s) cannot be used.

Write Pulse "Glitch" Protection

Noise pulses of less than 5 ns (typical) on $\overline{O E}, \overline{C E}$, or $W E$ will not initiate a write cycle.

Logical Inhibit

Writing is inhibited by holding any one of $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}=\mathrm{V}_{\mathrm{I}}$, or $\mathrm{WE}=\mathrm{V}_{\mathrm{I}}$. To initiate a write cycle CE and WE must be a logical zero while $\overline{O E}$ is a logical one.

Power-Up Write Inhibit

Power-up of the devices with $\mathrm{WE}=\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{O E}=\mathrm{V}_{\mathrm{H}}$ will not accept commands on the rising edge of WE . The internal state machine is automatically reset to the read mode on power-up.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with Power Applied	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Voltage with respect to Ground All pins except As, OE, RESET (Note 1)	-0.5 V to Vcc+0.5 V
Vcc (Note 1)	-0.5 V to +5.5 V
A9, OE, and RESET (Note	-0.5 V to +13.0 V

Notes: 1. Minimum DC voltage on input or I/O pins are -0.5 V . During voltage transitions, inputs may negative overshoot Vss to -2.0 V for periods of up to 20 ns . Maximum DC voltage on output and I/O pins are Vcc +0.5 V . During voltage transitions, outputs may positive overshoot to $\mathrm{Vcc}+2.0 \mathrm{~V}$ for periods of up to 20 ns .
2. Minimum DC input voltage on $A 9, \overline{O E}$ and RESET pins are -0.5 V . During voltage transitions, $A 9, \overline{O E}$ and RESET pins may negative overshoot $\mathrm{V} s \mathrm{ss}$ to -2.0 V for periods of up to 20 ns . Maximum DC input voltage on A_{9}, $\overline{\mathrm{OE}}$ and RESET pins are +13.0 V which may positive overshoot to 14.0 V for periods of up to 20 ns . Voltage difference between input voltage and supply voltage ($\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{cc}}$) do not exceed 9 V .

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING RANGES

Ambient Temperature (T_{A})Ambient Temperature for MBM29LV800TA/BA-90 $-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Ambient Temperature for MBM29LV800TA/BA-12 $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Vcc Supply Voltages +2.7 V to +3.6 V
Operating ranges define those limits between which the functionality of the devices are guaranteed.
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. Allthe device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

MAXIMUM OVERSHOOT

Figure 1 Maximum Negative Overshoot Waveform

Figure 2 Maximum Positive Overshoot Waveform 1

*: This waveform is applied for $\mathrm{A} 9, \overline{\mathrm{OE}}$, and RESET.

Figure 3 Maximum Positive Overshoot Waveform 2

DC CHARACTERISTICS

Parameter Symbol	Parameter Description	Test Conditions		Min.	Max.	Unit
ILI	Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}}$ Max.		-1.0	+1.0	$\mu \mathrm{A}$
ILo	Output Leakage Current	$V_{\text {out }}=\mathrm{V}_{\text {ss }}$ to $\mathrm{V}_{\mathrm{cc}}, \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Max}$.		-1.0	+1.0	$\mu \mathrm{A}$
Іıт	Aя, OE, RESET Inputs Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V} \mathrm{Vc} \text { Max. } \\ & \mathrm{A}_{9}, \mathrm{OE}, \text { RESET }=12.5 \mathrm{~V} \end{aligned}$		-	35	$\mu \mathrm{A}$
Icc 1	Vcc Active Current (Note 1)	$\begin{aligned} & \mathrm{CE}=\mathrm{V}_{\mathrm{IL}}, \mathrm{OE}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{f}=10 \mathrm{MHz} \end{aligned}$	Byte		22	
			Word		25	
		$\begin{aligned} & \mathrm{CE}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}, \\ & \mathrm{f}=5 \mathrm{MHz} \end{aligned}$	Byte	-	12	mA
			Word		15	
Icc2	Vcc Active Current (Note 2)	$\overline{C E}=\mathrm{V}_{\mathrm{IL}}, \mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$		-	35	mA
Icca	V cc Current (Standby)	$\begin{aligned} & \mathrm{V}_{c c}=\mathrm{V}_{\mathrm{cc}} \operatorname{Max.} . \overline{\mathrm{CE}}=\mathrm{V} \mathrm{Vc} \pm 0.3 \mathrm{~V} \\ & \mathrm{RESET}=\mathrm{V}_{\mathrm{cc}} \pm 0.3 \mathrm{~V} \end{aligned}$		-	5	$\mu \mathrm{A}$
Icc4	V cc Current (Standby, Reset)	$\begin{aligned} & \text { Vcc = Vcc Max., } \\ & \text { RESET }=\text { Vss } \pm 0.3 \mathrm{~V} \end{aligned}$		-	5	$\mu \mathrm{A}$
Icc5	Vcc Current (Automatic Sleep Mode) (Note 3)	$\begin{aligned} & \mathrm{Vcc}=\mathrm{Vcc} \mathrm{Max} ., \mathrm{CE}=\mathrm{V} \mathrm{ss} \pm 0.3 \mathrm{~V}, \\ & R E S E T=V \mathrm{Vc} \pm 0.3 \mathrm{~V} \\ & \mathrm{~V} \mathrm{~V}=\mathrm{Vcc} \pm 0.3 \mathrm{~V} \text { or } \mathrm{Vss} \pm 0.3 \mathrm{~V} \end{aligned}$		-	5	$\mu \mathrm{A}$
VIL	Input Low Level	-		-0.5	0.6	V
V_{H}	Input High Level	-		2.0	$\mathrm{Vcc}+0.3$	V
VID	Voltage for Autoselect and Sector Protection (As, OE, RESET) (Note 4)	-		11.5	12.5	V
VoL	Output Low Voltage Level	$\mathrm{loL}=4.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{cc}} \mathrm{Min}$.		-	0.45	V
Voh1	Output High Voltage Level	$\mathrm{lor}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\text {cc }}=\mathrm{V}_{\text {cc }}$ Min.		2.4	-	V
Vон2		$\text { Іон }=-100 \mu \mathrm{~A}, \mathrm{~V} \text { cc }=\mathrm{V} \text { cc } \mathrm{Min} .$		Vcc-0.4	-	V
Vıko	Low Vcc Lock-Out Voltage	$-$		2.3	2.5	V

Notes: 1. The Icc current listed includes both the DC operating current and the frequency dependent component (at 10 MHz).
2. Icc active while Embedded Algorithm (program or erase) is in progress.
3. Automatic sleep mode enables the low power mode when address remain stable for 150 ns .
4. $\left(\mathrm{V}_{\mathrm{ID}}-\mathrm{V}_{\mathrm{Cc}}\right)$ do not exceed 9 V .

AC CHARACTERISTICS

- Read Only Operations Characteristics

Parameter Symbols		Description	Test Setup		$\left(\begin{array}{l} -90 \\ \text { (Note) } \end{array}\right.$	$\stackrel{-12}{(\text { Note })}$	Unit
JEDEC	Standard						
tavav	trc	Read Cycle Time	-	Min.	90	120	ns
tavav	tacc	Address to Output Delay	$\begin{aligned} & \mathrm{CE}=V_{\mathrm{IL}} \\ & \mathrm{OE}=V_{I L} \end{aligned}$	Max.	90	120	ns
telav	tce	Chip Enable to Output Delay	$\overline{O E}=\mathrm{VIL}^{\text {I }}$	Max.	90	120	ns
tglav	toe	Output Enable to Output Delay	-	Max.	35	50	ns
tehaz	tDF	Chip Enable to Output High-Z	-	Max.	30	30	ns
tahaz	tbF	Output Enable to Output High-Z	-	Max.	30	30	ns
taxax	tor	Output Hold Time From Addresses, CE or OE, Whichever Occurs First	-	Min.	0	0	ns
-	tready	RESET Pin Low to Read Mode	-	Max.	20	20	$\mu \mathrm{s}$
-	$\begin{aligned} & \text { teLFL } \\ & \text { tELFH } \end{aligned}$	CE or BYTE Switching Low or High	-	Max.	5	5	ns

Note: Test Conditions:
Output Load: 1 TTL gate and 30 pF (MBM29LV800TA/BA-90)
1 TTL gate and 100 pF (MBM29LV800TA/BA-12)
Input rise and fall times: 5 ns Input pulse levels: 0.0 V to 3.0 V Timing measurement reference level

Input: 1.5 V
Output:1.5 V

Notes: $\mathrm{CL}=30 \mathrm{pF}$ including jig capacitance (MBM29LV800TA/BA-90)
$\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance (MBM29LV800TA/BA-12)
Figure 4 Test Conditions

- Write/Erase/Program Operations

Parameter Symbols		Description			-90	-12	Unit
JEDEC	Standard						
tavav	twc	Write Cycle Time		Min.	90	120	ns
tavwL	tas	Address Setup Time		Min.	0	0	ns
twLax	tar	Address Hold Time		Min.	45	50	ns
tovwh	tos	Data Setup Time		Min.	45	50	ns
twhox	tor	Data Hold Time		Min.	0	0	ns
-	toes	Output Enable Setup Time		Min.	0	0	ns
-	tоен	Output Enable Hold Time	Read	Min.	0	0	ns
			Toggle and Data Polling	Min.	10	10	ns
tghwL	tghwL	Read Recover Time Before Write		Min.	0	0	ns
tghel	tGHEL	Read Recover Time Before Write		Min.	0	0	ns
teLwL	tcs	CE Setup Time		Min.	0	0	ns
twlel	tws	WE Setup Time		Min.	0	0	ns
twher	tch	CE Hold Time		Min.	0	0	ns
terwh	twh	WE Hold Time		Min.	0	0	ns
twLwh	twp	Write Pulse Width		Min.	45	50	ns
teLeh	tcp	CE Pulse Width		Min.	45	50	ns
twhwL	twph	Write Pulse Width High		Min.	25	30	ns
tehel	tcPH	CE Pulse Width High		Min.	25	30	ns
twhwh 1	twhwh 1	Byte Programming Operation		Typ.	8	8	$\mu \mathrm{s}$
twHWH2	twhwH2	Sector Erase Operation (Note 1)		Typ.	1	1	sec
-	tvcs	Vcc Setup Time		Min.	50	50	$\mu \mathrm{s}$
-	tvidr	Rise Time to VId (Note 2)		Min.	500	500	ns
-	tvLht	Voltage Transition Time (Note 2)		Min.	4	4	$\mu \mathrm{s}$
-	twpp	Write Pulse Width (Note 2)		Min.	100	100	$\mu \mathrm{s}$
-	toesp	OE Setup Time to WE Active (Note 2)		Min.	4	4	$\mu \mathrm{s}$
-	tcsp	CE Setup Time to WE Active (Note 2)		Min.	4	4	$\mu \mathrm{s}$
-	trb	Recover Time From RY/BY		Min.	0	0	ns
-	trp	RESET Pulse Width		Min.	500	500	ns
-	tri	RESET Hold Time Before Read		Min.	200	200	ns

(Continued)
(Continued)

Parameter Symbols		Description		$\mathbf{- 9 0}$	$\mathbf{- 1 2}$	Unit
JEDEC	Standard					
-	trlaz	BYTE Switching Low to Output High-Z	Max.	30	40	ns
-	tFhav	BYTE Switching High to Output Active	Min.	30	40	ns
-	tbusy	Program/Erase Valid to RY/BY Delay	Max.	90	90	ns
-	teoe	Delay Time from Embedded Output Enable	Max.	90	120	ns

Notes: 1. This does not include the preprogramming time.
2. This timing is for Sector Protection operation.

SWITCHING WAVEFORMS

- Key to Switching Waveforms

WAVEFORM	INPUTS	OUTPUTS
	Must Be Steady	Will Be Steady
	May Change from H to L	Will Be Changing from H to L
	May Change from L to H	Will Be Changing from L to H
	" H " or "L" Any Change Permitted	Changing State Unknown
	Does Not Apply	Center Line is HighImpedance "Off" State

Figure 5.1 AC Waveforms for Read Operations

Figure 5.2 AC Waveforms for Hardware Reset/Read Operations

Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at byte address.
3. $\overline{D Q}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.
6. These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

Figure 6 AC Waveforms for Alternate WE Controlled Program Operations

Notes: 1. PA is address of the memory location to be programmed.
2. PD is data to be programmed at byte address.
3. $\overline{D Q}_{7}$ is the output of the complement of the data written to the device.
4. Dout is the output of the data written to the device.
5. Figure indicates last two bus cycles out of four bus cycle sequence.
6. These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

Figure 7 AC Waveforms for Alternate CE Controlled Program Operations

Notes: 1. SA is the sector address for Sector Erase. Addresses $=555 \mathrm{H}$ (Word), AAAH (Byte) for Chip Erase.
2. These waveforms are for the $\times 16$ mode. (The addresses differ from $\times 8$ mode.)

Figure 8 AC Waveforms Chip/Sector Erase Operations

*: $\mathrm{DQ}_{7}=$ Valid Data (The device has completed the Embedded operation).
Figure 9 AC Waveforms for Data Polling during Embedded Algorithm Operations

*: DQ6 stops toggling (The device has completed the Embedded operation).
Figure 10 AC Waveforms for Toggle Bit I during Embedded Algorithm Operations

Figure 11 RY/BY Timing Diagram during Program/Erase Operations

Figure 12 RESET/RY/BY Timing Diagram

Figure 13 Timing Diagram for Word Mode Configuration

Figure 14 Timing Diagram for Byte Mode Configuration

Figure 15 BYTE Timing Diagram for Write Operations

SAX : Sector Address for initial sector
SAY : Sector Address for next sector
Note: A-1 is VIL on byte mode.

Figure 16 AC Waveforms for Sector Protection Timing Diagram

Note: DQ_{2} is read from the erase-suspended sector.

Figure $18 \quad \mathrm{DQ}_{2}$ vs. DQ_{6}

SPAX : Sector Address to be protected
SPAY : Next Sector Address to be protected
TIME-OUT : Time-Out window = 150 us (min)

Figure 19 Extended Sector Protection Timing Diagram

EMBEDDED ALGORITHMS

Program Command Sequence* (Address/Command):

* : The sequence is applied for $\times 16$ mode.

The addresses differ from $\times 8$ mode.

Figure 20 Embedded Program ${ }^{\text {TM }}$ Algorithm

EMBEDDED ALGORITHMS

Chip Erase Command Sequence* $\begin{gathered}\text { Individual Sector/Multiple Sector* } \\ \text { Erase Command Sequence }\end{gathered}$ (Address/Command): (Address/Command):

*: The sequence is applied for $\times 16$ mode.
The addresses differ from $\times 8$ mode.

Figure 21 Embedded Erase ${ }^{\text {TM }}$ Algorithm

VA = Byte address for programming
= Any of the sector addresses within the sector being erased during sector erase or multiple sector erases operation
= Any of the sector addresses within the sector not being protected during chip erase

Note: DQ_{7} is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because DQ_{7} may change simultaneously with DQ_{5}.

Figure 22 Data Polling Algorithm

Note: DQ_{6} is rechecked even if $\mathrm{DQ}_{5}=$ " 1 " because DQ_{6} may stop toggling at the same time as DQ5 changing to "1".

Figure 23 Toggle Bit Algorithm

* : A-1 is VIL on byte mode.

Figure 24 Sector Protection Algorithm

Notes: 1. All protected sectors are unprotected.
2. All previously protected sectors are protected once again.

Figure 25 Temporary Sector Unprotection Algorithm

Figure 26 Extended Sector Protection Algorithm

FAST MODE ALGORITHM

* : The sequence is applied for $\times 16$ mode.

The addresses differ from $\times 8$ mode.

Figure 27 Embedded Program ${ }^{\text {TM }}$ Algorithm for Fast Mode

ERASE AND PROGRAMMING PERFORMANCE

Parameter	Limits			Unit	Comments
	Min.	Typ.	Max.		
Sector Erase Time	-	1	15	sec	Excludes programming time prior to erasure
Word Programming Time	-	16	5200	$\mu \mathrm{s}$	ludes system-lev
Byte Programming Time	-	8	3600	$\mu \mathrm{S}$	overhead
Chip Programming Time	-	8.4	50	sec	Excludes system-level overhead
Program/Erase Cycle	100,000	-	-	cycles	-

TSOP(I) PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
Cin	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0$	7.5	9.5	pF
Cout	Output Capacitance	Vout $=0$	8	10	pF
Cin2	Control Pin Capacitance	$\mathrm{V}_{\mathrm{IN}}=0$	10	13	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

SOP PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	7.5	9.5	pF
Cout	Output Capacitance	$\mathrm{V}_{\mathrm{U}}=0$	8	10	pF
$\mathrm{C}_{\mathbb{N} 2}$	Control Pin Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	10	13	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

SON PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	7.5	9.5	pF
Cout	Output Capacitance	Vout $=0$	8	10	pF
$\mathrm{C}_{\mathrm{IN} 2}$	Control Pin Capacitance	$\mathrm{V}_{\mathbb{I}=0}$	10	13	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

FBGA PIN CAPACITANCE

Parameter Symbol	Parameter Description	Test Setup	Typ.	Max.	Unit
$\mathrm{C}_{\mathbb{N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	T.B.D.	T.B.D.	pF
Cout	Output Capacitance	$\mathrm{V}_{\text {out }}=0$	T.B.D.	T.B.D.	pF
$\mathrm{C}_{\mathbb{N} 2}$	Control Pin Capacitance	$\mathrm{V}_{\mathbb{N}}=0$	T.B.D.	T.B.D.	pF

Note: Test conditions $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$

PACKAGE DIMENSIONS

(FPT-48P-M19)
EAD No.
(1)
(24)

* Resin Protrusin. (Each Side: 0.15 (.006)Max)

48-Pin plastic TSOP(I)

LEAD No.
© 1996 FUJITSU LIMTED F480299-2C-2
Dimensions in mm (inches)

(Continued)

44-pin plastic SOP
(FPT-44P-M16)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH

Am Siebenstein 6-10

D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F9802

© FUJITSU LIMITED Printed in Japan

